
Variables, Expressions, and
Statements	

Chapter 2	

Python for Informatics: Exploring Information	

www.pythonlearn.com	

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles R. Severance

Constants	

•  Fixed values such as numbers, letters, and strings are called
“constants” - because their value does not change	

•  Numeric constants are as you expect	

•  String constants use single-quotes (') ���
or double-quotes (") ���
	

>>> print 123	

123	

>>> print 98.6	

98.6	

>>> print 'Hello world'	

Hello world	

Variables	

•  A variable is a named place in the memory where a programmer can

store data and later retrieve the data using the variable “name”	

•  Programmers get to choose the names of the variables	

•  You can change the contents of a variable in a later statement	

12.2	

x	

14 	

y	

x = 12.2	

y = 14	

	

100	

x = 100	

Python Variable Name Rules	

•  Must start with a letter or underscore _ 	

•  Must consist of letters and numbers and underscores	

•  Case Sensitive	

•  Good: spam eggs spam23 _speed	

•  Bad: 23spam #sign var.12	

•  Different: spam Spam SPAM	

Reserved Words	

•  You can not use reserved words as variable names / identifiers	

and del for is raise 	

assert elif from lambda return 	

break else global not try 	

class except if or while 	

continue exec import pass yield 	

def finally in print 	

Sentences or Lines	

x = 2	

x = x + 2	

print x	

Variable	

 Operator	

 Constant	

 Reserved Word	

Assignment Statement	

Assignment with expression	

Print statement	

Assignment Statements	

•  We assign a value to a variable using the assignment statement (=)	

•  An assignment statement consists of an expression on the right hand
side and a variable to store the result	

x = 3.9 * x * (1 - x)	

x = 3.9 * x * (1 - x)	

0.6	

x	

Right side is an expression. Once
expression is evaluated, the result

is placed in (assigned to) x.	

0.6	

 0.6	

0.4	

0.93	

A variable is a memory location
used to store a value (0.6).	

x = 3.9 * x * (1 - x)	

0.6 0.93	

x	

Right side is an expression. Once
expression is evaluated, the result

is placed in (assigned to) the
variable on the left side (i.e. x).	

0.93	

A variable is a memory location
used to store a value. The value

stored in a variable can be updated
by replacing the old value (0.6)

with a new value (0.93).	

Numeric Expressions	

•  Because of the lack of mathematical
symbols on computer keyboards - we
use “computer-speak” to express the
classic math operations	

•  Asterisk is multiplication	

•  Exponentiation (raise to a power) looks
different from in math.	

Operator	

 Operation	

+	

 Addition	

-	

 Subtraction	

*	

 Multiplication	

/	

 Division	

**	

 Power	

%	

 Remainder	

Numeric Expressions	

>>> xx = 2	

>>> xx = xx + 2	

>>> print xx	

4	

>>> yy = 440 * 12	

>>> print yy	

5280	

>>> zz = yy / 1000	

>>> print zz	

5	

>>> jj = 23	

>>> kk = jj % 5	

>>> print kk	

3	

>>> print 4 ** 3	

64	

Operator	

 Operation	

+	

 Addition	

-	

 Subtraction	

*	

 Multiplication	

/	

 Division	

**	

 Power	

%	

 Remainder	

5	

 23	

4 R 3	

20	

3	

Order of Evaluation	

•  When we string operators together - Python must know which one
to do first	

•  This is called “operator precedence”	

•  Which operator “takes precedence” over the others	

x = 1 + 2 * 3 - 4 / 5 ** 6	

Operator Precedence Rules	

•  Highest precedence rule to lowest precedence rule	

•  Parenthesis are always respected	

•  Exponentiation (raise to a power)	

•  Multiplication, Division, and Remainder	

•  Addition and Subtraction	

•  Left to right	

Parenthesis	

Power	

Multiplication	

Addition	

Left to Right	

Parenthesis	

Power	

Multiplication	

Addition	

Left to Right	

1 + 2 ** 3 / 4 * 5	

1 + 8 / 4 * 5	

1 + 2 * 5	

1 + 10	

11	

>>> x = 1 + 2 ** 3 / 4 * 5	

>>> print x	

11	

>>> 	

Parenthesis	

Power	

Multiplication	

Addition	

Left to Right	

>>> x = 1 + 2 ** 3 / 4 * 5	

>>> print x	

11	

>>> 	

1 + 2 ** 3 / 4 * 5	

1 + 8 / 4 * 5	

1 + 2 * 5	

1 + 10	

11	

Note 8/4 goes before 4*5
because of the left-right

rule.	

Operator Precedence	

•  Remember the rules top to bottom	

•  When writing code - use parenthesis	

•  When writing code - keep mathematical expressions simple enough
that they are easy to understand	

•  Break long series of mathematical operations up to make them more
clear	

Parenthesis	

Power	

Multiplication	

Addition	

Left to Right	

Exam Question: x = 1 + 2 * 3 - 4 / 5	

Python Integer Division is Weird!	

•  Integer division truncates	

•  Floating point division produces
floating point numbers	

>>> print 10 / 2	

5	

>>> print 9 / 2	

4	

>>> print 99 / 100	

0	

>>> print 10.0 / 2.0	

5.0	

>>> print 99.0 / 100.0	

0.99	

This changes in Python 3.0	

Mixing Integer and Floating	

•  When you perform an
operation where one
operand is an integer and the
other operand is a floating
point the result is a floating
point	

•  The integer is converted to a
floating point before the
operation	

>>> print 99 / 100	

0	

>>> print 99 / 100.0	

0.99	

>>> print 99.0 / 100	

0.99	

>>> print 1 + 2 * 3 / 4.0 - 5	

-2.5	

>>> 	

What does “Type” Mean?	

•  In Python variables, literals, and

constants have a “type”	

•  Python knows the difference
between an integer number and a
string	

•  For example “+” means “addition”
if something is a number and
“concatenate” if something is a
string 	

>>> ddd = 1 + 4	

>>> print ddd	

5	

>>> eee = 'hello ' + 'there'	

>>> print eee	

hello there	

concatenate = put together	

Type Matters	

•  Python knows what “type”
everything is 	

•  Some operations are prohibited	

•  You cannot “add 1” to a string	

•  We can ask Python what type
something is by using the type()
function.	

>>> eee = 'hello ' + 'there'	

>>> eee = eee + 1	

Traceback (most recent call last):	

 File "<stdin>", line 1, in <module>	

TypeError: cannot concatenate 'str'
and 'int' objects	

>>> type(eee)	

<type 'str'>	

>>> type('hello')	

<type 'str'>	

>>> type(1)	

<type 'int'>	

>>> 	

Several Types of Numbers	

•  Numbers have two main types	

•  Integers are whole numbers: -14, -2, 0,
1, 100, 401233	

•  Floating Point Numbers have decimal
parts: -2.5 , 0.0, 98.6, 14.0	

•  There are other number types - they
are variations on float and integer	

>>> xx = 1	

>>> type (xx)	

<type 'int'>	

>>> temp = 98.6	

>>> type(temp)	

<type 'float'>	

>>> type(1)	

<type 'int'>	

>>> type(1.0)	

<type 'float'>	

>>> 	

Type Conversions	

•  When you put an integer and
floating point in an expression
the integer is implicitly
converted to a float	

•  You can control this with the
built in functions int() and float()	

>>> print float(99) / 100	

0.99	

>>> i = 42	

>>> type(i)	

<type 'int'>	

>>> f = float(i)	

>>> print f	

42.0	

>>> type(f)	

<type 'float'>	

>>> print 1 + 2 * float(3) / 4 - 5	

-2.5	

>>> 	

String
Conversions	

•  You can also use int() and
float() to convert between
strings and integers	

•  You will get an error if the
string does not contain
numeric characters	

>>> sval = '123'	

>>> type(sval)	

<type 'str'>	

>>> print sval + 1	

Traceback (most recent call last):	

 File "<stdin>", line 1, in <module>	

TypeError: cannot concatenate 'str' and 'int'	

>>> ival = int(sval)	

>>> type(ival)	

<type 'int'>	

>>> print ival + 1	

124	

>>> nsv = 'hello bob'	

>>> niv = int(nsv)	

Traceback (most recent call last):	

 File "<stdin>", line 1, in <module>	

ValueError: invalid literal for int() 	

User Input	

•  We can instruct Python
to pause and read data
from the user using the
raw_input function	

•  The raw_input function
returns a string	

nam = raw_input(‘Who are you?’)	

print 'Welcome', nam	

Who are you? Chuck	

Welcome Chuck	

Converting User Input	

•  If we want to read a
number from the user, we
must convert it from a
string to a number using a
type conversion function	

•  Later we will deal with
bad input data	

inp = raw_input(‘Europe floor?’)	

usf = int(inp) + 1	

print 'US floor', usf	

Europe floor? 0	

US floor 1	

Comments in Python	

•  Anything after a # is ignored by Python	

•  Why comment?	

•  Describe what is going to happen in a sequence of code	

•  Document who wrote the code or other ancillary information	

•  Turn off a line of code - perhaps temporarily	

# Get the name of the file and open it	

name = raw_input('Enter file:')	

handle = open(name, 'r')	

text = handle.read()	

words = text.split()	

	

# Count word frequency	

counts = dict()	

for word in words:	

 counts[word] = counts.get(word,0) + 1	

	

# Find the most common word	

bigcount = None	

bigword = None	

for word,count in counts.items():	

 if bigcount is None or count > bigcount:	

 bigword = word	

 bigcount = count	

	

# All done	

print bigword, bigcount	

String Operations	

•  Some operators apply to strings	

•  + implies “concatenation”	

•  * implies “multiple concatenation”	

•  Python knows when it is dealing
with a string or a number and
behaves appropriately	

>>> print 'abc' + '123’	

Abc123	

>>> print 'Hi' * 5	

HiHiHiHiHi	

>>> 	

Mnemonic Variable Names	

•  Since we programmers are given a choice in how we choose
our variable names, there is a bit of “best practice”	

•  We name variables to help us remember what we intend to
store in them (“mnemonic” = “memory aid”)	

•  This can confuse beginning students because well named
variables often “sound” so good that they must be keywords	

http://en.wikipedia.org/wiki/Mnemonic 	

x1q3z9ocd = 35.0 	

x1q3z9afd = 12.50	

x1q3p9afd = x1q3z9ocd * x1q3z9afd	

print x1q3p9afd	

hours = 35.0 	

rate = 12.50 	

pay = hours * rate 	

print pay	

a = 35.0 	

b = 12.50 	

c = a * b 	

print c	

What is this
code doing?	

Exercise	

Write a program to prompt the user for hours and
rate per hour to compute gross pay.	

Enter Hours: 35 	

Enter Rate: 2.75 	

Pay: 96.25	

Summary	

•  Type	

•  Resrved words	

•  Variables (mnemonic)	

• Operators	

• Operator precedence	

•  Integer Division	

•  Conversion between types	

•  User input	

•  Comments (#)	

